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a b s t r a c t 

Triphenylamine (TPA)-based aggregation-induced emission luminogens (TPA-AIEgens), a type of photoac- 

tive material utilizing the typical TPA moiety, has recently attracted increasing attention for the diag- 

nostics and treatment of tumors due to their remarkable chemo-physical performance in optoelectronic 

research. TPA-AIEgens are distinguished from other photoactive agents by their strong fluorescence, good 

sensitivity, high signal-to-noise ratio, resistance to photobleaching, and lack of high concentration or 

aggregation-caused fluoresce quenching effects. In this review, we summarize the current advancements 

and the biomedical progress of TPA-AIEgens in tumor theranostics. First, the design principles of TPA- 

AIEgens photoactive agents as well as the advanced targeting strategies for nuclei, cell membranes, cell 

organelle and tumors were introduced, respectively. Next, the applications of TPA-AIEgens in tumor di- 

agnosis and therapeutic techniques were reviewed. Last, the challenges and prospects of TPA-AIEgens for 

cancer therapy were performed. The given landscape of the TPA-AIEgens hereby is meaningful for the 

further design and utilization of the novel photoactive material, which could be beneficial for the devel- 

opment of clinic applications. 

© 2024 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia 

Medica, Chinese Academy of Medical Sciences. 

1

w

N

m

m

h

s

c

g

p

e

t  

p

(

a

o

n

i

e

l

e

c

c

c

i

m

(

m

h

1

. Introduction 

Malignant tumors are the primary cause of human mortality, 

hich represent a severe threat to human health and survival [1] . 

owadays, surgery, radiation, and chemotherapy are the three pri- 

ary traditional treatments. Unfortunately, these traditional treat- 

ents suffer def ects, such as significant systemic side effects and 

igh recurrence rates [ 2 , 3 ]. Recently, phototheranostics have made 

ignificant contributions to cancer treatment due to their light- 

ontrollability, non-invasiveness, specific target, low toxicity and 

ood selectivity [4–6] . Normally, photodynamic therapy (PDT) and 

hotothermal therapy (PTT) are two types of phototherapies that 

xogenous photosensitizing agents are involved to selectively kill 

umors or inhibit tumor growth with light radiation [ 7 , 8 ]. In PDT,

hotosensitizers (PSs) are typically used to generate cytotoxic re- 
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ctive oxygen species (ROS), such as singlet oxygen (1 O2 ), super- 

xide (O2 •
−) and hydroxyl radical ( • OH), which is able to elimi- 

ate tumor cells [ 5 , 9 ]. Photothermal agents can enhance the heat- 

ng process of cells and tissues in the local area by absorbing laser 

nergy and converting it into heat [10–12] , which is similar to 

aser therapy [13] . The main discrepancy is that laser therapy uses 

ndogenous chromophores with non-selectivity towards malignant 

ells, while PTT with exogenous agents can specifically target can- 

er cells. With the aid of photoactive agents, both the PDT and PTT 

an produce vigorous interaction with biological substances, lead- 

ng to the immunogenic cell death (ICD), vascular injury, and im- 

unological response [14–17] . 

Recently, the photoactive agents based on AIE luminogens 

AIEgens) developed by Tang Benzhong’s research group have 

ade breakthroughs in phototherapy research. An interesting 

henomenon termed aggregation-induced emission (AIE) occurs 

hen a series of non-emissive molecules in the dispersed state 

re induced to show strong emission upon aggregate formation 

r in solid state [18] . Due to the existence of the strong 

lectron-vibration coupling in the dispersed state, AIE molecules 
nstitute of Materia Medica, Chinese Academy of Medical Sciences. 
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Scheme 1. TPA-AIEgens for cancer theranostic, including targeting strategies, bio- 

logical imaging and cancer treatment. 
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emonstrate the intrinsic non-radiative transitions and fluores- 

ence quench. In the aggregated state, the molecular environ- 

ent’s restriction of intramolecular movements (RIM) might im- 

air the electron-vibrational coupling of molecular system, result- 

ng in depressed non-radiative transitions and enhanced fluores- 

ence [ 19 , 20 ]. In general, the clinical diagnostic agents ( e.g. , in-

ocyanine green, porphyrin) suffer from certain problems such 

s aggregation-induced fluorescence quenching (ACQ) and photo- 

leaching [ 21 , 22 ]; while AIEgens offers the following benefits com- 

ared to the traditional fluorescent dyes: (1) High-intensity fluo- 

escence; (2) efficient light conversion; (3) strong stability; (4) lu- 

inescence regulation by flexible chemical modification; (5) high 

esolution in biological imaging [ 23 , 24 ]. 

The fundamental AIE motifs, such as tetraphenylene (TPE), 

riphenylamine (TPA), 2,3,4,5-tetraphenylsiloles (TPS), phenylvinyl 

nthrance and phenyl substituted pyrrole, are integral to the cre- 

tion of AIE materials [25] . In contrast to typical TPE-AIEgens, TPA- 

IEgens is more flexible to be designed for in vivo applications 

uch as high water-solubility and strong near-infrared II (NIR-II) 

bsorption. The chemical structure of TPA is composed of three 

enzene rings and a central nitrogen atom. Due to its unique he- 

ical structure and three phenyl rotors, TPA not only plays a role 

s the strong electron donor but also acts as a molecular rotor, 

aking it easy to construct a variety of TPA-AIEgens. As an elec- 

ron donor, TPA is combined with an electron acceptor to ob- 

ain a molecule with donor-acceptor (D-A) structure resulting in 

n adjusted intramolecular push-pull electron interaction, which 

enefits the red-shift of fluorescence and/or enhances intersystem 

rossing (ISC) process to generate more ROS [ 25 , 26 ]. When acting

s a molecular rotor, the highly distorted conformation of TPA in- 

reases the molecular distance, reducing the intermolecular π- π
acking and retaining the intramolecular rotation, which is benefi- 

ial to promote fluorescence and/or heat generation [ 27 , 28 ]. There- 

ore, TPA is a crucial functional segment in the construction of TAP- 

IEgens. 

Up to now, TPA-AIEgens have been developed as novel molec- 

lar materials with photosensitive and photothermal capabilities, 

emonstrating the huge potential in tumor theranostics [29] . Thus, 

he design principles, targeting strategies, and the latest progress 

n biological imaging and treatment based on TPA-AIEgens pho- 

oactive agents are summarized in this minireview ( Scheme 1 ). 

irst, the principles of design TPA-AIEgens with near-infrared ab- 

orption and good biocompatibility were summarized. Next, TPA- 

IEgens t argeting strategies, including t argeting to nuclei, cell 

embranes, cell organelles and tumors, were presented. Then it 

ntroduced the application of TPA-AIEgens in biological imaging 

nd phototherapy for the most recent years. Finally, the pho- 

oactive agents based on TPA-AIEgens for cancer treatment were 

rospected. We hope this review can provide valuable information 
2

or design and application of TPA-AIEgens to accelerate their clini- 

al translation. 

. The design principles for TPA-AIEgens photoactive agents 

The three benzene rings and a central nitrogen atom make up 

he structure of TPA. TPA does not naturally emit fluorescence, but 

t can be used to create AIE compounds due to its helical structure 

nd strong electron donating capacity [ 30 , 31 ]. According to Jablon- 

ki diagram, organic molecules migrate from the ground state (S0 ) 

o the single excited state (S1 ) upon light absorption. The excited 

tate then returns to S0 state by releasing energy via radiative de- 

ay to produce fluorescence, or via internal conversion (IC) to yield 

eat. The ISC between S1 and triplet excited state (T1 ) happens 

hen their energy gap is tiny or when their spin orbit coupling 

ffect is strong. Nevertheless, T1 can react with the surroundings 

o yield ROS such as singlet oxygen (1 O2 ), free radicals (O2 •
−, • OH) 

wing to its much longer lifetime than S1 [32–35] . Thus, the pho- 

ophysical properties of TPA-AIEgens can be tailored via elegant 

olecular design. Besides, the TPA-AIEgens can not only be used 

s excellent luminescent materials, but also render more exciting 

unctions like photosensitizer, photothermal/photoacoustic agents 

36–39] . 

TPA is the core unit with good electron-donating performance, 

roviding a flexible platform for constructing AIEgens. The basic 

esign strategies of TPA-AIEgens are to build a twisted π system 

y introducing electron acceptor (A) and electron donor (D) to 

IM [40] : (1) Conjugation of different electron withdrawing units 

o tune the absorption/emission wavelength; (2) Build of various 

olecular backbone to meet the desired functions; (3) Enhance- 

ent of the steric hindrance of molecules to adjust molecular non- 

adiative attenuation properties. 

The structure of typical TPA-AIEgens were presented in Fig. 1 . 

he prolongation of π-conjugation system and/or strengthening 

f acceptor ability are main approach to endow TPA-AIEgens 

ith long-wavelength absorption/emission. The thiophene unit, 

s demonstrated in the compounds 2 and 3 , is commonly 

sed as π bridge [27] . To obtain high fluorescence quantum 

ield and drive the emission wavelength to the NIR-II region, 

enzo[1,2,5]thiadiazole (BT) and benzobisthiadiazole (BBT) are typ- 

cally utilized as strong acceptors (like compounds 4 and 8 ) [ 41 , 42 ].

oreover, the steric hindrance is also an efficient approach to ob- 

aining bright NIR fluorescence. The introduction of the steric hin- 

rance by rigid backbone has been successfully used to obtain high 

uorescence emission quantum yield. Compared with compound 4 , 

he rigidity of compound 5 was increased due to hydrogen bond 

ormation between additional benzene ring and BT core. A highly 

wisted D-A conformation in the excited state is stimulated, favor- 

ng the creation of the intramolecular charge transfer (ICT) state to 

ield a high fluorescence quantum yield (compound 4 : φfl = 0.45; 

ompound 5 : φfl = 0.6) [43] . The introduction of steric hindrance 

aused by ortho -substituted alkylthiophene encouraged the devel- 

pment of dark twisted intramolecular charge transfer (TICT) state 

o achieve a considerably red-shifted emission wavelength, as uti- 

ized in compounds 6 –8 [44] . Besides the radiative decay, nonra- 

iative decay could be used for other functional materials such 

s PS, photothermal agents. Reducing the energy gap between the 

1 and T1 ( �Est ) and enhancing ICT effect could yield promoted 

SC, which are more suitable to create radicals or singlet oxy- 

en for PDT. For example, compound 9 (tTID) and compound 10 

tTDCR) have been synthesized to show �Est values of 0.06 and 

.3 eV, respectively. Accompanied by declining in the �Est values, 

TDCR showed a greater capacity to produce ROS upon light irradi- 

tion in comparison with tTID [45] . Manipulating the TICT state via 

ctivating molecular motion in aggregates was verified as a power- 

ul strategy to meet the demand of photoacoustic imaging (PAI) as 
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Fig. 1. Typical TPA-AIEgens used for cancer diagnosis and treatment. Compounds 1 –3 with extended π system to obtain the red-shifted and high fluorescence emission; 

compounds 4 and 5 with rigid and strong acceptor unit to promote the fluorescence quantum yield; compounds 6 and 7 with low �Est values to enhance ROS generation; 

compounds 8 –10 with increased steric hindrance to red shift to NIR II emission; compounds 11 and 12 with TICT state to boost photothermal conversion property. 
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ell as PTT. The strong D-A structure (like compound 11 ) and ad- 

itional long-branched alkyl chains (like compound 12 ) make the 

olecular motion easy and lose intermolecular packing, resulting 

n a boost of photothermal conversion property [ 46 , 47 ]. 

. The targeting strategies for TPA-AIEgens photoactive agents 

With the in-depth understanding of tumor biology and mecha- 

ism based on tumor diagnosis and treatment, the precise delivery 

f photoactive agents to the tumor sites or specific organelles is 

 prerequisite for efficient cancer treatment [48–50] . Given the fa- 

orable characteristics of TPA-AIEgens, many researchers have de- 

eloped a variety of photoactive agents targeting tumor foci, nu- 

lei and organelles in accordance with the types of TPA-AIEgens. 

hese TPA-AIEgens have been widely applied for biological imag- 

ng and phototherapy, which can minimize the damage to health 

issues and reduce non-specific drug toxicity and achieve the ac- 

urate treatment. 

.1. Strategies for intracellular localization 

Organelle targeted probes have greatly increased therapeutic 

fficacy, which has garnered growing interest recently [51–53] . 

erein, we focus on the organelle-targeted probes based on TPA- 

IEgens framework. The structure-inherent targeting (SIT) strategy 

efers to the specific natural targeting ability of the molecule it- 

elf [54] . The overall electric charge (Z) and suitable logarithm of 

he octanol-water partition coefficient (log P ) could provide princi- 

le for design photoactive agents with specific targeting towards 

issue, cells and organelles [ 37 , 55 , 56 ]: (1) The molecule probes

ith a log P value between 0 and 8 and anioic properties are able

o be accumulated in nuclei; (2) A log P value between 0 and 5 

nd cationic properties allow the molecular to accumulate more 

n mitochondria; (3) The higher log P endows cationic molecules 

ith the localization at endoplasmic reticulum (ER); (4) With a 

egative log P value and cationic properties, the molecule can be 

aken up by lysosomes. Furthermore, recognition groups, targeting 
3

roups and fluorophores make up the majority of the components 

f organelle-targeting probes. 

Generally, to achieve accumulation at nuclei, the probe can be 

esigned either by binding to the DNA, or by binding to the his- 

one basic proteins. Platinum(II) complexes is commonly utilized as 

he DNA binding agents, conjunction of trinuclear platinum to the 

PA moiety can yield a nuclear target AIE probe. This probe trig- 

ered DNA damage reactions, arrested the cell cycle in the G2/M 

hase, and ultimately caused cell death [57] . In addition, intranu- 

lear enzyme and nucleic acids are the potential target sites. The 

ationic pyridine units and hydroxamic acid chelating group en- 

ow the AIE probe (MeTPAE) molecule with the capacities of nu- 

leic acid binding and the zinc ions chelating respectively, which 

ould cause obvious cell cycle arrest and show outstanding PDT 

nti-tumor effectiveness ( Fig. 2 a) [58] . 

Cell membrane is another favorite targeting site. To enrich at 

he cell membrane, the probe should endow superamphiphilic 

tructure properties, which can be bound to membrane proteins 

63] . The pyridine cationic unit is typically used for precisely cell 

embrane targeting. With this functional group, the probe TBMPEI 

as able to selectively accumulate on the cell membrane and sig- 

ificantly induce cell necroptosis upon irradiation by light ( Fig. 2 b) 

59] . 

The overproduction of ROS in mitochondria may result in oxida- 

ive stress, which may disturb the microenvironment of mitochon- 

rial and result in apoptosis, autophagy and necroptosis [64] . Thus, 

he mitochondrion is an important organelle for PDT. There are two 

asic approaches for targeting mitochondria. Building a positive 

harge structure is one option, while using mitochondria-specific 

eptides is another. Generally, the triphenylphosphonium (TPP) 

ation, trimethylphenylammonium hexafluorophosphate [65] and 

uaternary ammonium units [66] server as mitochondria-targeting 

ipophilic cationic ligands, which display the potential of electro- 

tatic attraction with the mitochondrial membrane. While the TPA- 

IEgens probe with a higher hydrophobicity and a cation strategy 

s preferring to accumulate in ER membranes after extended incu- 

ation [ 6 , 67 ]. In addition, ROS-induced stress in the ER may acti-

ate downstream immunological pathways, causing cells through 
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Fig. 2. (a) Schematic illustration of MeTPAE with nuclei-targeting function for PDT. Reproduced with permission [58] . Copyright 2022, Wiley-VCH. (b) Schematic illustra- 

tion of molecular design diagram of a high-performance AIE photosensitizer with cell membrane-targeting function for fluorescence imaging-guided PDT. Reproduced with 

permission [59] . Copyright 2022, The Royal Society of Chemistry. (c) Schematic illustration of the structures of DBP, TBP and TBP-SO3 . Reproduced with permission [60] . 

Copyright 2022, The Royal Society of Chemistry. (d) Schematic illustration of the structures of TTT-1, TTT-2, TTT-3 and TTT-4. Reproduced with permission [61] . Copyright 

2021, Elsevier. (e) Schematic diagram of the structure of 1,4-dihydropyridine derivatives for both LD and ER-targeting imaging and therapy. Reproduced with permission [62] . 

Copyright 2023, Wiley-VCH. 
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mmunogenic death [68] . Typically, modification of specific pep- 

ides or methyl sulfonamide can endow probe with ER-targeting 

bilities. A TPA-AIEgens (TBP-SO3 ) showed a comparable Pearson 

oefficient in compare to ER-Tracker Red ( P = 0.93) ( Fig. 2 c) [60] . 

The probe accumulated in lysosomes can be driven by pinocy- 

osis, ion trapping of weak bases, precipitation trapping of weak 

cids, or binding to lipid or protein [69] . The morpholine and other 

mine groups are the two classical moieties that serve as func- 

ional groups for the most lysosomes targeting [ 27 , 70 ]. A probe

amed TTT-4, displayed a powerful lysosomal targeting ability, 

eanwhile performed better photoacoustic guided imaging ability 

 Fig. 2 d) [61] . 

.2. Strategies for the multi-organelle targeting 

To obtain better therapeutic effect, the drugs with the capability 

f multi-organelle-targeting are more attractive than those target- 

ng to specific organelle. Therefore, increased attention has been 

onated to the structural design of TPA-AIEgens for the improve- 

ent of clinical outcome. A TPA-AIEgens (DTPAP-P) with TPA and 

yridine (P) was reported by Tang’s group. This cationic DTPAP-P 
4

an specifically target to mitochondria in the live cell, and to nu- 

lei when the cells were fixed, which provide a promising probe 

n stimulated emission depletion (STED) nanoscopy for the tunable 

rganelle-specific imaging and dynamic monitoring in nanometer 

cale [71] . 

Recently, the substituent effect was used to create a series of 

PA derivatives based on 1,4-DHPy as the photo-responsive group. 

ith additional pyridine, the TPA-DHPy-Py can target to lipid 

roplets and ER accompanying with the high ROS generation un- 

er the laser irradiation, which result in high photoactivation effi- 

iency and excellent photodynamic activity. TPA-DHPy-Py can pro- 

ide precise and tunable tumor phototherapy medications by en- 

bling in situ real-time monitoring of the lipid droplet fusion pro- 

ess and endoplasmic reticulum vacuolation under oxidative stress 

uring the light irradiation process ( Fig. 2 e) [62] . 

.3. Strategies for tumor targeting 

Tumor targeting of TPA-AIEgens is typically realized by their 

anocarriers. Various factors, such as the size, shape, surface 

harge, hydrophobicity, rigidity, and surface-conjugated ligand, 
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etermine the fate of TPA-AIEgens in the tumor cells. With the aid 

f nanocarriers, the targeting strategies are normally classified into 

wo kinds, one is passive targeting, the other is active targeting 

72] . 

By altering the size, shape, charge in accordance with the en- 

anced permeability and retention (EPR) effect, the passive tar- 

eting to tumor site can be accomplished. The uniform spheri- 

al structure of nanoparticles (NPs) with an average diameter of 

0–200 nm can be effectively accumulated at tumor sites [73] . 

he probe (TPA-T-TQ ONPs) encapsulated in the 1,2-distearoyl- sn - 

lycero-3-phosphoethanolamine- N -[methoxy(polyethylene glycol)- 

0 0 0] (DSPE-PEG20 0 0 ) with an average diameter of 56 nm were en- 

iched in tumor via EPR delivery strategy [74] . Due to the negative 

harge of tumor cells, the probe with positive charges will bene- 

t to accumulation of NPs in tumor site. Incorporation of pH re- 

ponse polymer ( e.g. , poly( β-amino ester)- b -poly(caprolactone)) on 

he surface of NPs, the NPs could be efficiently delivery to tumor 

ite via electronstatic binding force [46] . 

However, TPA-AIEgens with the passive target strategy can kill 

umor cells and normal indiscriminately, leading to strong side ef- 

ect such as systemic toxicity. Active targeting strategies is increas- 

ngly preferred to improve targeting specificity. Generally, the sur- 

ace of NPs can be modified with biological ligands targeting tu- 

or cell-specific receptors to achieve precise delivery of the car- 

oes. For example, CD44 is overexpressed on tumor cells surface, 

yaluronic acid (HA) can bind to CD44 through specific affinity. 

hus, HA can be employed as an active targeting moiety, linked 

o hydrophobic oligomer or self-assembled to lipid layer [75] . 

. Biological imaging based on TPA-AIEgens 

Tumor visualization can accurately locate the tumor site and 

efine its spread degree, which is helpful for better clinical di- 

gnosis and treatment of tumors [ 76 , 77 ]. Designing therapeutic 

gents with inherent image tracking property is therefore ex- 

remely desired to monitor and visualize the therapeutic effects. 

his section only discusses some representative works of TPA- 

IEgens as contrast agents for fluorescence imaging and fluores- 

ence/photoacoustic dual-modality imaging in recent five years. 

.1. Fluorescence imaging (FLI) 

AIEgens has emitted bright fluorescence to satisfy the partic- 

lar and stringent requirements of various applications, such as 

oninvasiveness, high sensitivity, easy operation, real-time track- 

ng [78–80] . In situ monitoring fundamental physical process make 

t possible to optimize treatment individually. In 2021, Zhu et al. 

eported a TPA-AIEgen (TPA-DPPy) for real-time fluorescence de- 

ection of tumor cells, which has a novel structure of D -A pyri- 

inium salt [81] . To improve uptake by tumor cells, TPA-DPPy was 

ncorporated into the low density lipoprotein (LDL) particles and 

fficiently delivered into mitochondrial via LDL receptor-mediated 

ndocytosis. As the illumination time increased, the fluorescence 

ntensity was significantly enhanced, and the morphology of the 

ells underwent significant changes, including chromatin conden- 

ation, cells shrinking from expanded 3 dimensional (3D) struc- 

ures to flat 2 dimensional (2D) shapes, which provide a real-time 

uorescence feedback for tumor treatment. To improve the pene- 

ration and imaging depth of light to biological tissues, two-photon 

uorescence imaging (2P-FLI) based on TPA-AIEgens was devel- 

ped [ 82 , 83 ]. TBP-Au, a powerful AIEgens, was prepared by inte- 

rating an anticancer Au (I) moiety with an AIE-active photosen- 

itizer (TBP), which exhibited a large two-photon absorption cross 

ection at 870 nm and reached a deeper imaging depth compared 

o single-photon imaging (imaging depth up to 170 μm) ( Figs. 3 a–

). Therefore, TBP-Au with two-photon imaging showed a better 
5

esolution and greater signal-to-noise ratio for tumor fluorescence 

racking [84] . Liu also investigated a two-photon photoactive agent 

PA-2PI for dual-targeted DNA and mitochondria imaging. It was 

emonstrated to penetrate deeper cells (24 μm) and abdominal 

lood vessels (384 μm) layers and to create a green fluorescence 

ignal when activated at 960 nm [85] . 

.2. Fluorescence and photoacoustic dual-modality imaging (FLI/PAI) 

PAI is a new biomedical imaging modality, which converted the 

bsorbed laser energy into ultrasonic waves by intrinsic or ex- 

rinsic contrast agents in the tissue, thus providing in vivo imag- 

ng information in high penetration depths [ 87 , 88 ]. However, the 

ow sensitivity and poor spatial resolution are the defects of PAI. 

PA-AIEgens combined with FLI/PAI dual modalities in one probe 

ould be unambiguously conducive to obtain wealthy and pre- 

ise tumor information, which is highly demand in modern life 

cience research [ 86 , 89 ]. In 2021, Tang’s group have demonstrated 

 hypoxia response probe TBTO that consisted of a TPA-BTD-TPA 

erivative with four diethylamino N -oxide groups [86] . The TBTO 

ad a typical donor-acceptor-donor (D-A-D) structure and a strong 

ICT effect, which allowed red shift of fluorescence emission to 

he NIR region and generated a strong PA signal. The in vivo dual- 

ode imaging of specific tumor microenvironments was verified 

hese properties ( Figs. 3 d and e). Recently, Peng et al. designed 

nd synthesized a photoactive agent CyQN-BTT with a donor- 

-acceptor (D- π-A) structure [90] . Both electron-deficient 2,1,3- 

enzothiadiazole and a π-bridge in CyQN-BTT were contributed to 

nhance charge transfer, promote non-radiative transition and red 

hift the emission to NIR-II region (938 nm). With the guidance of 

IR-II FLI and PAI, CyQN-BTT were precisely delivery to tumor site 

nd serves as a phototheranostic agent to treat cancer. 

. Cancer treatment based on TPA-AIEgens 

By incorporating functional groups, the TPA-AIEgens can be de- 

igned into various photoactive agents used for cancer treatment, 

hich benefit from red-shifted NIR absorption and emission, in- 

reased ROS generation, and higher photothermal conversion effi- 

iency [ 27 , 91 ]. Many research have demonstrated the effectiveness 

f TPA-AIEgens as phototherapeutic agents for PDT, PTT and com- 

ination therapy to achieve the best therapeutic effect on tumors 

nd avoid tumor metastasis and recurrence [92–94] . In this section, 

he most recent progress of TPA-AIEgens-based photoactive agents 

n PDT, PTT and combination therapies for tumor treatment were 

iscussed. 

.1. Photodynamic therapy 

In PDT, PS are used to produce ROS and kill tumor cells under 

ight irradiation [95] . To improve the efficiency of PDT, subcellu- 

ar targeting has become a promising strategy to deliver drugs. A 

eries of TPA-AIEgens (TPA-TPP, Br-TPA-TPP, MeO-TPA-TPP and OPY- 

PA- TPP) with dual-cationic fluorophores were designed by Tang’s 

roup, showing superior killing efficiency on cancer cells due to 

heir mitochondria-target abilities [96] . In vivo experiment further 

erified that MeO-TPA-TPP can substantially inhibit tumor growth 

Figs. S1a–e in Supporting information). The monitor and regula- 

ion of oxidative stress in lipid droplets (LD) and ER are of vital im- 

ortance. The photoactivatable fluorescent probe TPA-DHPy with a 

,4-dihydropyridine moiety can quickly transform into its pyridine 

ounterpart TPA-Py through photo-oxidative dehydrogenation. Un- 

er the white light irradiation, the probe demonstrated a high ROS 

eneration efficiency. Furthermore, the in situ generated TPA-Py 

an drastically kill tumor cells by disrupting the function of LD and 

R [62] . By rationally modifying the 1,4-DHPy substituent groups, 
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Fig. 3. (a) Molecular design and synthetic route of TBP-Au. (b) Schematic illustration of TBP-Au for anticancer therapeutics through synergistic effects of photodynamic 

therapy and thioredoxin reductase (TrxR) inhibition. (c) In vivo real-time fluorescence imaging in HeLa tumor-bearing nude mice after intratumor injection of TBP-Au ( λex: 

530 nm). Reproduced with permission [84] . Copyright 2021, American Chemical Society. (d) In vivo real-time PA images of the tumor site in the mice after tail intravenous 

injection with TBTO NPs. (e) In vivo real-time NIR fluorescence imaging in tumor site after intratumoral injection with TBTO NPs. Reproduced with permission [86] . Copyright 

2021, Elsevier. 
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 new finely engineered TPA-DHPy-Py AIEgen was synthesized and 

xhibited a lower oxidation potential, higher photoactivation effi- 

iency, and smaller singlet-triplet energy gaps than TPA-DHPy [97] , 

hich demonstrated excellent PDT performance (Figs. S1f and g in 

upporting information). 

.2. Photothermal synergistic therapy 

In PTT, exogenous photothermal agents with high photother- 

al conversion efficiency can generate localized heat, thus pro- 

iding the opportunity for tumor ablation [98–101] . As an ideal 

hotothermal agents, TPA-AIEgens should demonstrate negligible 

uorescence and enhanced nonradiative transition energy, which 

an be realized by increased ICT effect. For example, the TPA 

oiety was conjugated to electron-deficiency thiadiazoquinoxa- 

ine moiety to yield TPA-T-TQ [74] . The enhanced ICT effect be- 

tows the TPA-T-TQ with a NIR absorption from 700 nm to 900 nm 

nd excellent photothermal conversion performance. Then, nano- 

recipitation technique was employed to form TPA-T-TQ NPs in or- 

er to introduce TPA-T-TQ into aqueous media. The excellent pho- 

othermal ability of TPA-T-TQ NPs has also been proved effective 

n killing tumor cells via a rapid temperature increase in the tu- 

or site in vivo [70] . Since the effectiveness of PDT or PTT alone

s constrained, the synergistic use of PDT and PTT is considered 

s a promising strategy to overcome their shortcomings to max- 

mize the therapeutic effects of tumor treatment [ 102 , 103 ]. Tang 

t al. chose 9,10-phenanthrenequinone (PQ) conjugated with TPA 

erivatives to create a series of PSs with D-A-D structure [104] . 

ecause of strong electron-withdrawing ability and intramolecular 

ond stretching vibration of PQ, these PQ-cored photosensitizers 

howed the outstanding photothermal conversion efficiency (37.1%) 

nd highly effective ROS generation. In addition, these PQ deriva- 
6

ives fabricated nanoagents showed great potential for Type I pho- 

odynamic and photothermal combined antitumor therapy, as ver- 

fied by both in vitro and in vivo experiments (Figs. S2a–d in Sup- 

orting information). The diketopyrrolopyrrole (DPP) can also be 

sed for construction multifunctional photoactivator. The created 

PA-TDPP NPs enabled NIR fluorescence image-guided PDT and PTT 

ynergistic treatment due to its near-infrared fluorescence, excel- 

ent photodynamic therapy efficiency (1 O2 quantum yield: 50%) 

nd strong photothermal conversion ability (38.7%) (Figs. S2e–h in 

upporting information) [105] . 

.3. Phototherapy combined with immunotherapy 

Only PDT or PTT treatment can hardly trigger systemic im- 

une response and eliminate the tumor completely, thus pho- 

otherapy combined with immunotherapy can boost ICD effect 

nduced by phototherapy and achieve better treatment effect 

 106 , 107 ]. To overcome the immunosuppression of tumor microen- 

ironment and boost immune response, reprogramming tumor- 

ssociated macrophages is a promising strategy. Li’s group de- 

igned a TPA-AIEgens PS with a D-A structure named tTDCR with 

 high ROS-generating efficiency. This probe was able to reprogram 

he macrophages from a pro-tumor type (M2) to an anti-tumor 

tate (M1) via stimulating the nuclear factor κB (NF- κB) signaling 

athway. In vivo experiments have proved that tTDCR can activate 

hotodynamic immunotherapy for efficient tumor growth inhibi- 

ion [45] . In addition, the type I PS could induce the ICD of tumor

ells, reverse the immunosuppressive microenvironment, and pro- 

ote the infiltration of CD4+ and CD8+ T cells even in hypoxic 

umors environment [108] . 

The immune checkpoint blockers are also used for synergistic 

umor therapy. Tang et al. designed a novel PS called α-Th-TPA-PIO 
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Table 1 

The summary of TPA-AIEgens for tumor theranostics. 

Name Absorption/emission Target Diagnosis Therapeutics Tumor model Ref. 

β-TPA-PIO 405 nm/543 nm Endoplasmic reticulum FLI PDT SKOV3 subcutaneous 

tumor model 

[6] 

tTDCR 488 nm/627 nm Tumor FLI PDT + immuno-therapy 4T1 subcutaneous tumor 

model 

[45] 

Tri(3-pyridylphenyl)amine 405 nm/480–580 nm Nucleus FLI PDT HeLa xenograft tumor 

model 

[57] 

MeTPAE 405 nm/600 ± 20 nm Nucleus FLI PDT 4T1 subcutaneous tumor 

model 

[58] 

TBMPEI 465 nm/780 nm Cell membrane FLI PDT 4T1 subcutaneous tumor 

model 

[59] 

TPANPF6 405 nm/520–650 nm Mitochondrion FLI PDT / [65] 

TPATrzPy-3 + 405 nm/570–650 nm Mitochondrion FLI PDT Zebrafish model of liver 

tumor 

[66] 

T-BDP 363, 631 nm/724 nm Lysosome FLI PDT + PTT / [70] 

DTPAP-P 456 nm/543 nm Nucleus FLI PDT / [71] 

TPA-DHPy-Py 488 nm/600–700 nm Endoplasmic reticulum 

and lipid droplets 

FLI PDT MDA-MB-231 

subcutaneous model 

[62] 

BDPTPA 808 nm/- Tumor PAI PDT + PTT 143B xenograft tumor 

model 

[73] 

TPA-T-TQ 780 nm/- Tumor PAI PTT 4T1 subcutaneous tumor 

model 

[74] 

Ce6@HA-Cys-TTDTT 635 nm/700–750 nm Tumor NIR FLI PDT + PTT HeLa subcutaneous tumor 

model 

[75] 

TPA-DPPy 405 nm/- Saturated fatty acids 

and mitochondrion 

FLI PDT / [81] 

TBP-Au 488, 870 nm/575–630 nm Lysosome and lipid 

droplets 

2P-FLI PDT HeLa subcutaneous tumor 

model 

[84] 

TPA-2PI 960 nm/600–800 nm DNA and 

mitochondrion 

2P-FLI PDT 4T1 subcutaneous tumor 

model 

[85] 

CyQN-BTT 671, 800 nm/900–1100 nm Tumor NIR-II FLI + PAI PDT + PTT 4T1 subcutaneous tumor 

model 

[90] 

MeO-TPA-TPP 455 nm/550–620 nm Mitochondrion FLI PDT 4T1 breast tumor model [96] 

TPA-DHPy 488 nm/500–650 nm Endoplasmic reticulum 

and lipid droplets 

FLI PDT HeLa subcutaneous tumor 

model 

[97] 

PQ-TPAOC1 NPs 660 nm/- Tumor / PDT + PTT 4T1 tumor model [104] 

TPA-TDPP 638 nm/743 nm Tumor FLI PDT + PTT HeLa tumor model [105] 

TPA-DCR 460 nm/620 ± 25 nm / FLI PDT + immuno-therapy 4T1 subcutaneous tumor 

model 

[108] 

α-Th-TPA-PIO 465 nm/660 nm Endoplasmic reticulum FLI PDT + immuno-therapy B16-F10 subcutaneous 

tumor model 

[109] 

Platinum(II) TPA 405 nm/620 ± 20 nm Mitochondrion FLI PDT + immuno-therapy U14 subcutaneous tumor 

model 

[110] 

DCP-PTPA 680 nm/- Tumor PAI / 4T1 xenograft tumor 

model 

[111] 

BOPHY-2TPA 561 nm/630–690 nm HeLa cell FLI PDT / [112] 
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hat can selectively accumulate in ER and cause ER stress, further 

eading to effective ICD. When combined with anti-programmed 

eath-ligand 1 (anti-PD-L1), PDT and immune checkpoint block- 

de work together synergistically to produce a robust systemic 

mmunological response (Figs. S3a–d in Supporting information) 

109] . Another powerful immunotherapeutic strategy for the treat- 

ent of tumor is the activation of the cyclic GMP-AMP synthase- 

timulator of the interferon gene (cGAS-STING) pathway. Two Pt(II) 

omplexes (Pt1 and Pt2) incorporating alkylated TPA ligand L were 

esigned, which was the first photoactivator of the cGAS-STING 

athway. Upon light irradiation, Pt1 and Pt2 damaged mitochon- 

rial/nuclear DNA and nuclear membrane, and induced pyroptosis 

n tumor cells, which in turn stimulate an intense anti-tumor im- 

une response in vivo [110] . 

. Conclusion and outlook 

In this review, we summarized recent advances of TPA-AIEgens 

or cancer theranostics. Compared to clinical photoactive agents, 

PA-AIEgens shows unique and excellent advantageous such as 

right emission, robust ROS generation, high photothermal conver- 

ion efficacy, resulting in improved antitumor efficacy. By rational 

esign, TPA-AIEgens demonstrate NIR II absorption/emission, en- 

anced phototherapy. Owing to AIE characteristics, TPA-AIEgens is 
7

vailable to visualize the tumor foci, which plays a vital role in 

he clinic diagnosis and image-guided surgeons. Moreover, the PDT 

nd PTT combined with immunotherapy, could be a promising ap- 

roach to enhance the immunotherapy efficiency ( Table 1 ). 

Despite impressive advancements of TPA-AIEgens in the realm 

f biomedicine, there are still certain problems and challenges for 

linical application. First, TPA-AIEgens suffer from poor targeting 

apability of tumors and the accumulation of TPA-AIEgens mainly 

elies on the EPR effect. By modifying the size, shape, structure, 

urface charge and target ligands of nanovehicles [113–115] , it will 

e possible to create TPA-AIEgens photoactivators furnishing with 

nique active targeting properties for accurate and effective anti- 

umor treatment in future. Second, the relationship between struc- 

ure and target properties of TPA-AIEgens should be systemati- 

ally studied, which will provide theoretical guidance for further 

evelopment of the TPA-AIEgens to fulfill clinical requirements. 

hird, most of the excitation wavelengths of TPA-AIEgens are in 

he visible range. Compared to those dyes with an absorption in 

he NIR biological window, TPA-AIEgens encounter the challenges 

n imaging of deep tissue and high resolution requiremen [116–

18] . Besides, TPA-AIEgens, as the photoactive agents, still require 

igorous investigation on the therapeutic immunological mecha- 

ism and in vivo ADMET (absorption, distribution, metabolism, ex- 

retion and toxicity) properties. Different strategies including the 
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[
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[

[

tructure design of the probes which have been discussed in 

ection 3 , have achieved substantial developments and will defi- 

itely promote their transition by addressing the clinical concerns 

 107 , 119 ]. Last but not least, biosafety issues are inevitable for the

evelopment of novel TPA-AIEgens. Biodegradability and long-term 

oxicity to humans must be considered to meet the demands of 

linical translation. Consequently, in order to achieve the therapeu- 

ic effect of totally curing malignancies and successfully prevent- 

ng tumor metastasis and recurrence, it is imperative to conduct 

n-depth research on TPA-AIEgens through the aforementioned as- 

ects. In future research, the biomedical application of TPA-AIEgens 

n tumor diagnosis and treatment systems can be vigorously pro- 

oted. 
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