Rational design of an activatable dual-color fluorogenic probe for revealing the interaction of adenosine-5′-triphosphate and peroxynitrite in pyroptosis associated with acute kidney injury

Yuxia Zou a,b,1, Tingting Duan a,1, Yan Wang b, Qing Ye b,*, Yiyong Li a, Xiaofeng Wang a, Xuan Liu a, Xuejun Zhou a, Fabiao Yu a,c,**, Heng Liu

a Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
b Shengli Clinical Medical College of Fujian Medical University, Department of Otolaryngology, Head and Neck Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
c Key Laboratory of Hainan Trauma and Disaster Rescue, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China

ARTICLE INFO

Keywords:
Adenosine-5′-triphosphate
Peroxynitrite
Dual-color
Pyroptosis
Acute kidney injury

ABSTRACT

ATP and ONOO' play unique roles in various biological events and exhibit notable interactions. To date, there is no available chemical tool for investigating the correlation between ATP and ONOO' concentrations in pyroptosis associated with acute kidney injury (AKI). Herein, we designed a novel dual-color near-infrared fluorescent (NIRF) probe P2 for simultaneous visualization of ATP and ONOO' both in vitro and in vivo. Unlike previously reported single-site fluorescent probes, P2 enabled concurrent imaging of ATP and ONOO' in two distinct fluorescence channels, with emission wavelengths centered at 585 and 690 nm, which greatly reduced spectral cross-talk. Employing a HK-2 pyroptosis model, a significant interaction between ATP and ONOO' was unveiled. Elevated ONOO' production was found to correlate with decreased ATP levels; conversely, an increase in ATP levels was associated with rapid ONOO' scavenging. Remarkably, P2 allowed the assessment of cellular hypoxia by monitoring ATP and ONOO' concentrations. The commercial ONOO'-scavenger uric acid showcased a protective effect on HK-2 cells via inhibition of the cellular pyroptosis pathway. Furthermore, P2 was successfully employed for imaging of ATP and ONOO' in the AKI mice model. Our findings confirmed that renal ischemia-reperfusion triggered a rise in ONOO' levels, concurrent with a decline in ATP levels. Surprisingly, the cells exhibited a compensatory recovery of ATP levels as the reperfusion time was prolonged. These results suggested the newly devised P2, as a pivotal chemical tool for the simultaneous monitoring of ATP and ONOO', might open new avenues for disease diagnosis and treatment.

1. Introduction

Adenosine-5′-triphosphate (ATP), primarily synthesized through cellular respiration, stands as a vital energy source for organisms. Disruption of ATP homeostasis is closely related to oxidative stress, which arises from the production of reactive oxygen species (ROS) [1–3]. Notably, peroxynitrite (ONOO’), an important ROS, is produced in response to stressful inflammation in vivo, further exacerbating the inflammatory response and causing cellular and tissue damage [4,5]. In recent years, the emergence of pyroptosis, a novel form of programmed cell death observed in inflammatory cells, has attracted considerable attention. Often referred to as cellular inflammatory necrosis, pyroptosis triggers the activation of multiple caspases through inflammatory vesicles, leading to the cleavage of gasdermin family members, including GSDMD, culminating in cell death [6,7]. This process plays a significant role in inflammatory-related diseases, such as atherosclerotic,
neurological, and urological diseases [8–10]. Pyroptosis can be initiated by various pathological conditions, including oxidative stress. ATP is a key molecule in the non-classical pyroptosis pathway, and intracellular ATP levels tend to decrease during pyroptosis, which may be linked to cellular energy metabolism and oxidative stress [11–13]. As such, investigating changes in ATP and ONOO levels in pyroptosis is essential to elucidate their mechanisms of action and relationships with various diseases.

The involvement of pyroptosis in the progression of acute kidney injury (AKI) has been reported [14–16]. AKI encompasses a group of clinical syndromes characterized by a sudden and profound deterioration in renal function, resulting in increased serum creatinine, decreased urine output, vascular dysfunction, intense inflammatory response, and tubular epithelial cell injury [17,18]. Early detection and elimination of risk factors for acute tubular necrosis are crucial in preventing AKI, considering its diverse etiologies, with acute ischemia being one of the most common. Renal ischemia can damage vascular endothelial cells through an inflammatory response or inflammatory mediators produced by renal tubular cells, making ischemic AKI a stress-inflammatory disease. The release of superoxide anion and nitric oxide from glomerular capillary endothelial cells upregulates the levels of ONOO through diffusion reactions in AKI. ONOO’s potent oxidative properties can induce apoptosis and necrosis of renal tubular epithelial cells and activate inflammatory reactions, leading to oxidative damage of the glomerular filtration membrane [19]. Normal renal cells require high levels of ATP to maintain physiological functions. However, in the context of AKI, the concentration of ATP decreases significantly due to the ischemic and hypoxic state of renal tissues, affecting intracellular metabolism and functions [20–22]. Previous studies have shown that ONOO decreases ATPase activity, inhibits ATP synthesis, and ultimately downregulates ATP levels in renal tissue [23,24]. Consequently, ATP and ONOO are implicated in the onset and progression of AKI, and a detailed study of their interaction mechanisms will be beneficial for the early diagnosis and treatment of AKI [25].

For the past few years, numerous single-site near-infrared fluorescent (NIRF) probes have been developed for the specific monitoring of ATP or ONOO levels in cells or in vivo [26–43]. Nevertheless, NIRF probes capable of imaging both ATP and ONOO with minimal emission spectra crosstalk are rare [44]. Addressing this challenge, we engineered two structurally novel dual-color readout NIRF probes by integrating rhodamine and methylene blue into a molecular backbone via diethylene triamine or 1-(2-aminoethyl) piperazine linker. Among them, P2 offered superior anti-interference performance. Even in the simultaneous presence of ATP and ONOO, P2 was able to differentiate between ATP and ONOO with minimal spectral overlap in two distinct fluorescence channels, which greatly reduced the output of false-positive fluorescence signals in the detection process. The reaction of ATP or ONOO with P2 triggered rhodamine ring-opening or methylene blue deprotection, which correspondingly showed intense fluorescence signals at 585 and 690 nm. This spectral change provided an intuitive and sensitive means of detecting ATP and ONOO in cells and mice. Leveraging P2, it was not only possible to distinguish normal from cancer cells but also verified the existence of intracellular ATP and ONOO interactions. Importantly, through dynamic monitoring of ATP and ONOO level fluctuations in pyroptosis, uric acid (UA) was found to be a potential inhibitor of pyroptosis. For the first time, P2 was employed to demonstrate a negative correlation between the expression levels of ATP and ONOO in AKI, characterized by increased ONOO levels and decreased ATP levels. Overall, this innovative dual-color activated NIRF probe P2 afforded an indispensable chemical tool for elucidating the complex roles of ATP and ONOO in pyroptosis associated with AKI.

2. Experimental section

2.1. Materials and apparatus

The apparatus, materials, fluorescence analysis, analytes solution preparation, cytotoxicity, cellular model, and in vivo imaging in the AKI mouse model were listed in the Supporting information.

2.2. Synthesis and characterization of P1

Sodium carbonate (318 mg, 3.0 mmol) was added to a stirred solution of 2-(2-(2-aminoethyl)aminoethyl)-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthene]-3-one (527 mg, 1.0 mmol) and MB-Cl (347 mg, 1.0 mmol) in CH2Cl2. The reaction mixture was stirred at room temperature overnight. After the reaction was stopped, the solvent was removed under reduced pressure. The crude products were directly purified on a silica gel column (200–300 mesh) using CH2Cl2/CH3OH (30/1) to obtain the desired compound P1 as a purple solid in 35 % isolated yield (293 mg).1H NMR (400 MHz, CDCl3): 7.89–7.87 (m, 1 H), 7.45–7.43 (m, 2 H), 7.31 (d, J = 8.6 Hz, 2 H), 7.10–7.08 (m, 1 H), 6.64 (d, J = 2.7 Hz, 2 H), 6.57 (dd, J = 8.8, 2.8 Hz, 2 H), 6.41 (d, J = 8.8 Hz, 2 H), 6.37 (d, J = 2.6 Hz, 2 H), 6.23 (dd, J = 8.9, 2.6 Hz, 2 H), 5.43 (s, 1 H), 3.31 (q, J = 7.1 Hz, 8 H), 3.23–3.11 (m, 4 H), 2.89 (s, 12 H), 2.43–2.34 (m, 4 H), 2.03–1.98 (m, 1 H), 1.14 (d, J = 7.0 Hz, 12 H).13C NMR (100 MHz, CDCl3): 168.63, 156.02, 153.51, 153.26, 148.82, 148.78, 132.92, 132.46, 131.01, 128.68, 128.49, 128.03, 127.20, 126.83, 122.73, 111.39, 110.84, 108.04, 105.21, 97.60, 65.12, 48.20, 46.70, 44.31, 40.74, 40.18, 12.55. HRMS m/z: C31H29N4O4S [M]+ calcld for 838.4353 found 838.4391.

2.3. Synthesis and characterization of P2

Sodium carbonate (318 mg, 3.0 mmol) was added to a stirred solution of Rh-N (553 mg, 1.0 mmol) and MB-Cl (347 mg, 1.0 mmol) in CH2Cl2. The reaction mixture was stirred at room temperature overnight. After the reaction was stopped, the solvent was removed under reduced pressure. The crude products were directly purified on a silica gel column (200–300 mesh) using CH2Cl2/CH3OH (30/1) to obtain the desired compound P2 as a purple solid in 67 % isolated yield (583 mg).

1H NMR (400 MHz, CDCl3): 7.86–7.84 (m, 1 H), 7.49 (d, J = 9.0 Hz, 2 H), 7.42–7.38 (m, 2 H), 7.06–7.04 (m, 1 H), 6.62 (d, J = 2.8 Hz, 2 H), 6.55 (dd, J = 8.9, 2.8 Hz, 2 H), 6.40 (d, J = 8.8 Hz, 2 H), 6.34 (d, J = 2.6 Hz, 2 H), 6.22 (dd, J = 8.8, 2.5 Hz, 2 H), 3.31 (q, J = 7.1 Hz, 8 H), 3.19 (t, J = 7.3 Hz, 2 H), 3.13–3.10 (m, 4 H), 2.89 (s, 12 H), 2.09–2.07 (m, 4 H), 2.01 (t, J = 7.4 Hz, 2 H), 1.14 (t, J = 7.0 Hz, 12 H).13C NMR (100 MHz, CDCl3): 167.91, 158.18, 153.54, 153.21, 148.63, 148.63, 132.92, 132.46, 131.01, 128.68, 128.49, 128.03, 127.20, 111.39, 110.84, 108.04, 105.21, 97.60, 65.12, 48.20, 46.70, 44.31, 40.74, 40.18, 12.55. HRMS m/z: C32H30N4O4S [M]+ calcld for 865.4587 found 865.4534.

2.4. Cell culture and Imaging

CNE1, NP69, 5–8 F, CNE2, and HK-2 cells were cultured as normal, and the cells were inoculated into laser-confocal specialized culture dishes after they had grown to 90 %. The cells were cultured at a temperature of 37 °C containing 95 % air and 5 % CO2 until the cells adhered to the wall. The cells were stained with 20 μM P2 and imaged. Fluorescent images were acquired on a Zeiss LSM 510 META laser confocal microscope with an objective lens (× 60). Ch1 channels (ATP, λex = 530 nm) were collected from 540 nm to 620 nm; Ch2 channels (ONOO−, λex = 630 nm) were collected from 650 nm to 740 nm.
3. Results and discussion

3.1. Design principles for the P1 and P2

Rhodamine and methylene blue, two popular dyes with outstanding optical properties and biocompatibility, have been widely employed as core structures for the construction of activatable fluorescent probes. Although dual-reaction site fluorescent probes based on rhodamine have been reported, the challenge of selecting two suitable dyes to minimize excitation and emission overlap for enhancing signal-to-noise ratios in bioimaging applications was still an urgent issue [45–48]. In this design, P1 and P2 were composed of three components: a rhodamine unit, a methylene blue unit, and a linker unit (Scheme 1). A detailed synthesis of P1 and P2 was outlined in Figures S1 and S5, respectively. The molecular structures of P1 and P2 were confirmed by 1H NMR, 13C NMR, and MS (Figure S2-S4, S6-S8). P1 and P2 fluoresce weakly at 585 and 690 nm due to the closed ring of rhodamine and the de-aromatization of methylene blue. The addition of ATP induced strong fluorescence from rhodamine ring-opening, which was attributed to the hydrogen bonding of the phosphate of ATP with the amino group and the π-π interaction of the adenine of ATP with rhodamine. Exposure to ONOO$^-$ triggered the release of methylene blue via oxidative deformylation, yielding a robust fluorescence at 690 nm. To verify the sensing mechanism, the reaction of ATP or ONOO$^-$ with P2 was carried out. HRMS results revealed the presence of a major peak at m/z 1371.4430 assigned to the complex P2-ATP (Figure S9). Two dominant peaks at m/z 576.3358 and 284.1278 corresponded to the cleaved rhodamine derivative Rh-N and methylene blue (Figure S10).

3.2. In vitro spectral characterization of P1 and P2

With P1 and P2 in hand, UV–vis and fluorescence emission spectra were initially conducted. Both P1 and P2 presented new maximum absorption peaks at 565 or 668 nm after the addition of ATP or ONOO$^-$. At the same time, significant fluorescence enhancement at the emission wavelength of 585 or 690 nm under 530 or 630 nm excitation was observed (Fig. 1a-f). Given the complexity of the biological environment, particular attention was paid to potential spectral interferences during the detection of ATP and ONOO$^-$ that could affect the accuracy of the assay. Specifically, ONOO$^-$, ATP, ATP + ONOO$^-$ (ATP first, then ONOO$^-$), and ONOO$^-$ + ATP (ONOO$^-$ first, then ATP) were added to the solution of P2 to measure the fluorescence spectra. Notably, the addition of ATP, ATP + ONOO$^-$, and ONOO$^-$ + ATP all triggered noticeable fluorescence enhancement at 585 nm under 530 nm excitation, with no significant difference between the intensities (Fig. 1e). When ONOO$^-$ was added, the fluorescence change was almost imperceptible. Similarly, the addition of ONOO$^-$, ATP + ONOO$^-$, and ONOO$^-$ + ATP initiated sharp fluorescence changes at 690 nm under 630 nm excitation, whereas ATP alone gave a negligible fluorescence change (Fig. 1f). For P1, there were no significant differences in the fluorescence response in the presence of ONOO$^-$, ATP + ONOO$^-$, and ONOO$^-$ + ATP under 630 nm excitation (Fig. 1c). However, with the excitation of 530 nm, ATP + ONOO$^-$ and ONOO$^-$ + ATP exhibited markedly enhanced fluorescence intensity at 585 nm compared to ATP alone (Fig. 1b). This phenomenon indicated that ONOO$^-$ might interfere with the accurate measurement of ATP concentration in the detection system of P1. By comparing the changes in fluorescence between P1 and P2 across the two emission regions under various conditions, it was reasonable to believe that P2
could effectively eliminate the mutual interference of ATP and ONOO⁻ (100 μM). Addition of ONOO⁻ after its reaction with ONOO⁻ resulted in a continuous increase in the emission intensity of P2. The reaction kinetics between P2 and ATP was further investigated. When varying concentrations of ATP (0, 5, 10, 15 mM) were added to the solution of P2, the fluorescence intensity at 585 nm rapidly increased to ATP in the millimolar concentration range, consistent with the fluorescence intensity of the detection system at 585 nm, except for ATP. Selectivity, the fluorescence intensities of P2 at 585 and 690 nm in the presence of other bioactive molecules were recorded. Under 530 nm excitation, none of the bioactive molecules could induce changes in the fluorescence intensity of P2 itself were negligible, while there were fluorescence intensity of the emerging 690 nm emission peak were also examined. As can be seen from Figure S16, when ONOO⁻ was added at 600 s, the fluorescence intensity increased sharply and reached a maximum within 50 s. The effect of pH on the fluorescence intensity of P2 at 690 nm was studied in the presence or absence of ONOO⁻. (Fig. 1 k). Over a pH range of 3.0–11.0, the changes in fluorescence intensity of P2 itself were negligible, while there were fluorescence responses in the presence of ONOO⁻ in all cases. To evaluate selectivity, the fluorescence intensities of P2 at 585 and 690 nm in the presence of other bioactive molecules were recorded. Under 530 nm excitation, none of the bioactive molecules could induce changes in the fluorescence intensity of the detection system at 585 nm, except for ATP and ADP. (Fig. 1 h). Under 630 nm excitation, bioactive molecules elicited negligible fluorescence response of P2 at 690 nm, and only the addition of ONOO⁻ produced a prominent fluorescence signal. These results confirmed that P2 enabled highly sensitive and specific detection of ATP and ONOO⁻ in two relatively independent fluorescence emission ranges, providing a foundation for subsequent biological experiments.

Fig. 1. Spectral characterization of 10 μM P1 or P2. (a-f) UV-vis and fluorescence spectra of P1 or P2 in the absence or presence of ONOO⁻ (25 μM), ATP (15 mM), 15 mM ATP + 25 μM ONOO⁻, 25 μM ONOO⁻ + 15 mM ATP. (g) Fluorescence response of P2 to increase concentrations of ATP from 0 to 15 mM. (h) Time-dependent fluorescence intensity of P2 in the presence of ATP (0, 5, 10, 15 mM). (i) Fluorescence enhancement at 585 nm of P2 upon treatment with different potential interfering species: 1) blank; 2) ADP (10 mM); 3) AMP (10 mM); 4) H₂PO₄⁻ (500 μM); 5) HPO₄²⁻ (500 μM); 6) PO₄³⁻ (500 μM); 7) CO₃²⁻ (500 μM); 8) SO₄²⁻ (500 μM); 9) NO₃⁻ (500 μM); 10) Cl⁻ (500 μM); 11) Na⁺ (500 μM); 12) K⁺ (500 μM); 13) Mg²⁺ (200 μM); 14) Ca²⁺ (200 μM); 15) Zn²⁺ (200 μM); 16) GSH (1 mM); 17) D-glucose (1 mM); 18) ATP (15 mM). (j) Fluorescence responses of P2 to increase concentrations of ONOO⁻ from 0 to 25 μM. (k) pH influence on fluorescence intensity at 690 nm of P2 before and after the addition of 25 μM ONOO⁻. (m) Fluorescence enhancement at 690 nm of P2 upon treatment with different potential interfering species: 1) blank; 2) H₂PO₄⁻ (500 μM); 3) HPO₄²⁻ (500 μM); 4) PO₄³⁻ (500 μM); 5) CO₃²⁻ (500 μM); 6) SO₄²⁻ (500 μM); 7) NO₃⁻ (500 μM); 8) Na⁺ (500 μM); 9) K⁺ (500 μM); 10) Mg²⁺ (200 μM); 11) Ca²⁺ (200 μM); 12) Zn²⁺ (200 μM); 13) GSH (1 mM); 14) H₂O₂ (100 μM); 15) ClO⁻ (100 μM); 16) -OH (100 μM); 17) ¹O₂ (100 μM); 18) ONOO⁻ (25 μM). λex/em = 530/585 nm (ATP channel), λex/em = 630/690 nm (ONOO⁻ channel).

3.3. Fluorescence imaging of ATP and ONOO⁻ activity in cultured cells

In view of the excellent photophysical properties of P2 described above, we proceeded to investigate its potential for monitoring ATP and...
ONOO⁻ in cells. The CCK-8 assay played a crucial role in evaluating fluorescent probes in cellular and in vivo imaging studies. Therefore, the cytotoxicity of P2 was first assessed using the CCK-8 assay before bio-imaging (Figure S17). Upon exposure to varying concentrations of P2 from 0 to 1 mM for 24 h, the cell viability of human nasopharyngeal carcinoma cells (CNE1, 5–8 F, CNE2), human normal nasopharyngeal cells (NP69), and human kidney 2 cells (HK-2) were above 50 %, which indicated that P2 featured low cytotoxicity and good biocompatibility. Subsequently, CNE-1 and HK-2 cells were selected to verify the ability of P2 to image endogenous ATP and ONOO⁻ at the cellular level. As depicted in Figure S18, faint fluorescent signals were immediately observed in the green (Ch 1, ATP) and red channels (Ch 2, ONOO⁻) in CNE1 cells treated with P2. The fluorescence signal in both channels gradually intensified over 30 min. Similarly, HK-2 cells treated with P2 exhibited a weak fluorescent signal in Ch 1 (ATP) and a detectable signal in Ch 2 (ONOO⁻) after 5 min (Figure S19). The fluorescence signals in both channels gradually increased with time from 0 to 30 min. However, the fluorescence signal in Ch 2 (ONOO⁻) was overall weaker than that in CNE1 cells, indicating that the ONOO⁻ concentration in HK-2 cells was lower than that of CNE1 cells. The imaging results of CNE1 and HK-2 cells demonstrated that P2 could track endogenous ATP and ONOO⁻ in cells.

Afterward, the imaging of ATP and ONOO⁻ interactions in cells with P2 was examined. In the control group, CNE1 cells stained with P2 for 20 min showed a robust green fluorescence signal in Ch 1 (ATP) and a moderate red fluorescence signal in Ch 2 (ONOO⁻). In cells pretreated with SIN-1 (1.0 mM, a commercial ONOO⁻ donor) for 1 h, the Ch 2 (ONOO⁻) fluorescence signal significantly increased, while the Ch 1 (ATP) fluorescence signal weakened. This might be attributed to the inhibition of ATP activity by Omy A, which caused mitochondrial dysfunction, resulting in increased ONOO⁻ levels. These results illustrated that the expression levels of intracellular ATP and ONOO⁻ interacted with each other and P2 was able to real-time monitor the fluctuation of intracellular ATP and ONOO⁻ levels.

3.4. Identification of normal and cancer cells

Four cell lines (NP69, CNE1, CNE2, 5–8 F) were chosen to investigate the ability of P2 to differentiate between normal and cancer cells. There was no significant variability in Ch 1 fluorescence intensity among the different cell lines stained with P2. However, Ch 2 fluorescence intensity was lower in normal cells NP69 compared to the cancer cells (CNE1, CNE2, 5–8 F). This indicated that the ATP levels were similar in NP69 and CNE1, CNE2, and 5–8 F cells, whereas the ONOO⁻ levels exhibited significant differences. As indicated in Fig. 3, merging images clearly displayed the difference in fluorescence imaging between NP69 and CNE1, CNE2, and 5–8 F. The results demonstrated that P2 could identify normal and cancer cells through dual-color fluorescence imaging.

3.5. The interrelationship between ATP and ONOO⁻ during pyroptosis

AKI represented an inflammatory disease capable of directly impairing vascular endothelial cells through inflammatory responses. During hypoxia-ischemia, the cells were prone to pyroptosis, which accelerated cell death. Previous findings have confirmed that pyroptosis was an essential mode of renal tubular epithelial cell death and loss in the development of AKI from various factors, as well as triggering the onset of the renal inflammatory response [49]. To further elucidate these mechanisms, a chemical hypoxia model using CoCl₂·6 H₂O (an oxygen deprivation reagent) was established. The dual-channel fluorescence signal of P2 was employed to track the level fluctuations of ATP and ONOO⁻ in cells treated with CoCl₂·6 H₂O (Fig. 4a). Figs. 4b and 4c showed that with increasing CoCl₂·6 H₂O concentration, the Ch 1 fluorescence signal diminished while the Ch 2 fluorescence signal enhanced.

Fig. 2. Fluorescence imaging of ATP and ONOO⁻ interactions in CNE1 cells. (a) The cells were treated with SIN-1 (1.0 mM), SIN-1 (1.0 mM) and UA (500 μM), Omy A (25 μM), Omy A (25 μM), and ATP (10 mM) for 1.0 h each, respectively, and then stained with P2 (20 μM) for 20 min. (b) Average fluorescence intensity of P2 labeled cells in images (a) (Ch 1, ATP). (c) Average fluorescence intensity of P2 labeled cells in images (a) (Ch 2, ONOO⁻). The data were shown as mean ± S.D. (* P < 0.05, ** P < 0.01, **** P < 0.0001, n = 3). Scale bar: 20 μm.
This indicated that a reduction in intracellular ATP levels was accompanied by a rise in ONOO\(^-\) levels. Fig. 4 d illustrated that the survival rate of HK-2 cells gradually decreased, directly validating that hypoxia would lead to the deterioration of cell status and even death. To investigate whether HK-2 cells underwent pyroptosis in
\(\text{CoCl}_2 \cdot 6\text{H}_2\text{O}\)-induced chemical hypoxia, the expression levels of intracellular pyroptosis-related proteins were further analyzed using western blot. The protein expression level of hypoxia-inducible factor-1α (HIF-1α) significantly increased, proving that CoCl\(_2 \cdot 6\text{H}_2\text{O}\) successfully induced hypoxia in HK-2 cells (Figs. 4 e, 4 h). Compared to the control group, the expression levels of caspase-1 and N-GSDMD proteins were upregulated with increasing concentrations of CoCl\(_2 \cdot 6\text{H}_2\text{O}\), suggesting C-caspase 1 was activated to cleave GSDMD, forming N-GSDMD peptide fragments and inducing pyroptosis via the classical caspases-1 dependent pathway (Fig. 4 e-g).

Ischemia/hypoxia (I/H) played an important role in the progression of AKI. To reveal whether pyroptosis occurred during I/H and changed the levels of ATP/ONOO\(^-\), we further simulated an I/H model using HK-2 cells through oxygen-glucose deprivation. HK-2 cells were switched to sugar-free and serum-free medium and incubated in 95 % N\(_2\), 5 % CO\(_2\) incubator at 37 \(^\circ\)C for either 1 h or 2 h, then returned to complete medium and continued to incubate for an additional 24 h for subsequent assays. As depicted in Fig. 5a-c, after 1 h of I/H, both Ch 1 (ATP) and Ch 2 (ONOO\(^-\)) fluorescence signals showed varying degrees of enhancement.
compared with the control. Upon 2 h of I/H, the Ch 1 (ATP) fluorescence signal was significantly weakened, and the Ch 2 (ONOO-) fluorescence signal continued to increase. The above phenomena were indicative of a compensatory cellular appearance with enhanced intracellular energy metabolism to resist I/H under a milder degree of I/H. Additionally, we examined the cell viability post-I/H and observed a decrease in cell viability with prolonged I/H duration (Fig. 5d). This suggested that I/H resulted in irreversible cellular damage despite the initial compensatory mechanisms. To demonstrate that HK-2 cells underwent pyroptosis post-I/H, the expression levels of pyroptosis-related proteins were examined. The significant elevation of the HIF-1\textalpha protein expression level represented the successful construction of the I/H HK-2 cell model (Figs. 5e, 5h). Western-blot assay revealed the elevated expression levels of C-caspase 1 and N-GSDMD protein, supporting the activation of caspase 1, cleavage of GSDMD, and induction of pyroptosis under acute I/H condition (Fig. 5e-g).

3.6. Protective effect of UA on HK-2 cells post-I/H

The findings in Fig. 5 testified that I/H HK-2 cells underwent pyroptosis, concomitant with decreased intracellular ATP and increased ONOO-. UA was a commercial selective ONOO- scavenger that effectively inhibited ONOO--mediated cellular damage. The protective effect of UA on I/H HK-2 cells was then investigated. As seen in Fig. 6a-c, the fluorescence signal of Ch 1 (ATP) was enhanced in the UA-treated group (2 h + UA) compared to the I/H group (2 h + DMSO), while the fluorescence signal of Ch 2 (ONOO-) was reduced, meaning UA effectively cleared the excessive ONOO- production within cells. The significant
increase in cell survival in the UA-treated group, demonstrated in Fig. 6d, further supported the protective role of UA against I/H-induced cellular damage. We also explored whether UA protected HK-2 cells from injury by inhibiting the pyroptosis pathway. Western-blot analysis revealed that the addition of UA to cells resulted in decreased activation of C-caspase-1 and cleaved N-GSDMD, along with a reduction in the downregulation of HIF-1α protein (Fig. 6e-h). The above protein level assays signified UA could improve the hypoxic condition of HK-2 cells and attenuate cellular injury by reducing I/H-induced pyroptosis through inhibition of the caspase 1-dependent classical pathway. These results indicated UA could be used as a potential inhibitor of pyroptosis, providing a therapeutic strategy for protecting cells from I/H-induced damage.

3.7. In vivo visualization of ATP and ONOO⁻ activity in AKI mice

Encouraged by the excellent imaging capabilities of P2 at the cellular level, we extended its application to visualize ATP and ONOO⁻ activity in AKI mice. C57BL/6 mice were deeply anesthetized, and the left kidney tip was clamped for 15 min and then released for reperfusion. The right kidney served as the untreated group. The kidneys were injected in situ with P2 at 24 h, 48 h, and 72 h post-injury and imaged 30 min later. In Ch 1 (ATP), the fluorescence signal of the right kidney hardly changed, whereas the left kidney exhibited an initial decrease followed by a slow rebound in fluorescence signal compared to the right kidney. In Ch 2 (ONOO⁻), minimal fluorescence was observed in the right kidney, while the fluorescence signal in the left kidney was sharply enhanced at 24 h in comparison to the left kidney (Fig. 7a-c). The fluorescence signal of the left kidney in Ch 2 remained high at 72 h but decreased slightly compared with 24 h. The reason might be that part of ONOO⁻ was eliminated through the glomerulus and tubules, down-regulating the intrarenal ONOO⁻ level. The in vivo imaging results implied the kidneys produced large amounts of ONOO⁻ and experienced rapid ATP depletion within 24 h of acute ischemia-reperfusion (I/R). With the extension of reperfusion time to 72 h, certain undamaged cells in the left kidney compensated for the intracellular activities and energy metabolism to restore the intrarenal ATP level to normal. After 72 h, the kidney tissues were cut into sections of 10 µm thickness for H&E staining (Fig. 7d, e). The normal right kidney tissues visualized clear renal tissue structures, while the ischemic left kidney tissues appeared to have necrotic epithelial cells and mildly dilated renal tubules. H&E staining results corroborated the successful establishment of the AKI mice model. Further, a bilateral mouse model of renal I/R AKI was established on this basis. After 24 h of I/R, the fluorescence signal of Ch 1 (ATP) decreased

![Fig. 7.](image-url)
in both left and right kidneys, returning to near-normal levels at 48 h (Figs. 7f, 7g). The fluorescence signal of Ch2 (ONOO-) significantly increased at 24 h of I/R and slightly decreased at 48 h in both kidneys (Figs. 7f, 7h). HE sections of both bilateral ischemic tissues displayed massive epithelial cell necrosis, degeneration, and moderate to severe renal tubular dilatation (Figs. 7i, 7j). Upon bilateral acute I/R, a large amount of ONOO- was generated, resulting in a rapid depletion of ATP. These findings illustrated that P2 was capable of detecting and visualizing ATP and ONOO- in vivo, as well as its capability to distinguish the severity of AKI.

4. Conclusion

In summary, we have disclosed a novel NIRF probe P2 with dual-color fluorescence emission and harnessed it for the simultaneous detection of ATP and ONOO- in vitro and in vivo. P2 possessed outstanding optical properties for imaging intracellularly endogenous and exogenous ATP and ONOO- and distinguishes between cancerous and normal cells. The research unveiled an interplay between ATP and ONOO-, with an imbalance closely related to pyroptosis and AKI. Utilizing the dual-color imaging capability of P2, the dynamics of ATP and ONOO- during pyroptosis were sensitively monitored. In the CoCl\textsubscript{2}-6 H\textsubscript{2}O and oxygen-glucose deprivation-stimulated HK-2 cell experiments, not only did WB analysis reveal that cellular pyroptosis was triggered via the caspase-1-dependent classical pathway, but also a significant increase in the level of ONOO- and a decrease in the level of ATP were observed. Moreover, UA was found to have a prominent cytoprotective effect, suggesting its potential as a therapeutic agent through the inhibition of pyroptosis. Benefitting from P2, we successfully tracked changes in ATP and ONOO- levels in the AKI mice model. Specifically, ONOO- levels were dramatically elevated in the kidneys of AKI mice, while ATP levels initially declined and then gradually recovered with the prolongation of reperfusion time. These findings further demonstrated the detection and diagnostic potential of P2 in the process of AKI. We believed that an in-depth exploration of ATP and ONOO- interactions would offer valuable insights into the development of innovative diagnostic and therapeutic approaches for related diseases.

CRediT authorship contribution statement

Xuejun Zhou: Resources. Xiaofeng Wang: Conceptualization. Xuan Liu: Formal analysis. Yiyi Li: Funding acquisition. Heng Liu: Writing – review & editing, Supervision, Resources, Project administration, Methodology, Funding acquisition. Fabiao Yu: Writing – review & editing, Funding acquisition, Conceptualization. Yan Wang: Writing – review & editing, Formal analysis. Qing Ye: Funding acquisition, Conceptualization. Yuxia Zou: Writing – original draft, Data curation, Conceptualization. Tingding Duan: Validation, Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22264013), Natural Science Foundation of Fujian Province (2020J011104), Fujian Provincial Health Technology Project (2021GGA004), Special Funds of S&T Cooperation and Exchange Projects of Shanxi Province (202204041101040), Hainan Province Science and Technology Special Fund (ZDYF2021SH2219, ZDYF2022SHFZ037), Hainan Provincial Natural Science Foundation of China (822R2C831, 821Q2N60), Natural Science Research Talent Project of Hainan Medical University (JGGS202101), Project of Hainan Association for Science and Technology of Youth Science and Talents (QCXM202023), Project for Functional Materials and Molecular Imaging Science Innovation Group of Hainan Medical University and Hainan Province Clinical Medical Center (2021). Thanks to the support and assistance in terms of instruments and facilities provided by Public Research Center of Hainan Medical University.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.snb.2024.136367.

References
